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MATHEMATICAL MODEL OF AN INCOMPRESSIBLE

VISCOELASTIC MAXWELL MEDIUM

UDC 532.135 + 532.137V. V. Pukhnachev

Nonstationary motions of incompressible viscoelastic Maxwell continuum with a constant relaxation
time are considered. Because in an incompressible continuous medium, pressure is not a thermody-
namic variable but coincides with the stress-tensor trace to within a factor, it follows that, separating
the spherical part from this tensor, one can assume that the remaining part of the stress tensor has
zero trace. In the case of an incompressible medium, the equations for the velocity, pressure, and
stress tensor form a closed system of first-order equations which has both real and complex charac-
teristics, which complicates the formulation of the initial-boundary-value problem. Nevertheless, the
resolvability of the Cauchy problem can be proved in the class of analytic functions. Unique resolv-
ability of the linearized problem was established in the classes of functions of finite smoothness. The
class of effectively one-dimensional motions for which the subsystem of three equations is a hyperbolic
one was studied. The results of an asymptotic analysis of the latter imply the possible formation of
discontinuities during the evolution of the solution. The general system of equations of motion admits
an infinite-dimensional Lie pseudo-group which contains an extended Galilean group. The theorem
of the invariance of the conditions on the a priori unknown free boundary was proved to obtain exact
solutions of free-boundary problems. The problem of deformation of a viscoelastic strip subjected to
tangential stresses applied to the free boundary is considered as an example of application of this
theorem. In this problem, a scale effect of short-wave instability caused by the absence of diagonal
dominance of the stress tensor deviator was found.

Key words: viscoelastic medium, incompressibility, Maxwell relation, Galilean group, free-boundary prob-
lems.

Introduction. The Maxwell viscoelastic model has been the subject of extensive mathematical studies
[1–4]. This model is used to describe the behavior of metals under pulsed loading and the motion of melts and
solutions of polymers. However, whereas in the first case, it is necessary to take into account the compressibility
of the medium, in polymer flow, the compressibility factor does not play a significant role and the flow velocity
field can therefore be considered solenoidal. The present paper deals with a study of the mathematical properties
of incompressible viscoelastic Maxwell continuum. The material characteristics of this medium are its density ρ,
dynamic viscosity μ, and relaxation time τ . We denote the velocity, pressure, stress tensor, and strain rate tensor
by v, p, P , and D, respectively. Next, it is assumed that the medium is not acted upon by volume forces or is acted
upon by external forces which have a potential.

The sought functions are related by three equations: the scalar continuity equation, the vector equation of
momentum, and the tensor rheological relation. The first two equations have universal form (see, for example, [5]),
whereas in the choice of the last equation there is arbitrariness [1, 3]. The problem of a rational choice of the
rheological relation for an incompressible viscoelastic Maxwell medium is considered in Sec. 2.
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1. Equations of Motion. The continuity equation for an incompressible continuous medium has the form

div v = 0. (1.1)

The momentum equation for any continuous medium satisfying the Cauchy stress principle is written as

ρ(vt + v · ∇v) = divP. (1.2)

To formulate the closing rheological relation, we write the stress tensor as

P = −pI + S, (1.3)

where I is unit tensor. From the assumption of the incompressibility of the medium, it follows that the pressure is no
longer a thermodynamic variable but arises as a constraint reaction of the mechanical system force to the kinematic
constraint — solenoidailty of the velocity field. The physical meaning of the quantity p in an incompressible fluid
is discussed in detail by Serrin [5], who used the notion of the mean pressure

p̄ = −(1/3) trP (1.4)

and showed that the mean pressure p̄ coincides with the usual pressure p only in the case of a linear relationship
between the tensors D and P . Below, it is assumed that a linear relationship between these tensors also exists for
relaxing media, in particular, for Maxwell continuum. In this case, by analogy with a Newtonian incompressible
viscous fluid, we will identify the mean pressure with the usual pressure. Then, Eqs. (1.3) and (1.4) and the equality
p = p̄ lead to

trS = 0. (1.5)

In other words, the tensor S is the deviator of the stress tensor P . Unlike in the case of a compressible Maxwell
medium, where the relaxation relation is written for the entire tensor P [1–4], we will assume that this relation is
satisfied only for the deviator part S of the tensor P :

τ
d̃S

dt
+ S = 2μD. (1.6)

Here d̃/dt is one of the invariant or objective derivatives of the tensor [1, 3]. The choice of this derivative is ambigu-
ous: it can be the upper or lower convective derivative, the corotational Jaumann derivative or their combinations.
It is important that, with this choice, relation (1.6) is invariant under rotation with arbitrary angular velocity.

The validity of the above assumption follows from the reasoning based on the results of [6, 7]. Apakshev
and Pavlov [6] studied the inertial axial motion of a vertical cylinder placed in a vessel of large diameter filled with
water. The viscosity effect was responsible for a reduction in the angular velocity of the cylinder with time, as was
observed in the experiment. However, it turned out that in the final stage of rotation, the velocity of rotation of the
cylinder changed nonmonotonically. Damping oscillations with a period of about one half of an hour were found.
Korenchenko and Beskachko [7] investigated the inertial rotation of a solid disk placed on the free water surface in
a cylindrical vessel and found a damping oscillation mode. Similar modes have also been observed in other working
media. This suggests that, along with viscosity, elasticity is a significant factor which determines the behavior of
water at low shear strain rate of the order of 10−3 sec−1. In [6], the shear modulus of water G at low strain rates
was estimated to be of the order of 10−6 N/m2. A close estimate of G can be obtained by analyzing the results
of [7]. At the same time, the bulk compression modulus of water K � G can be estimated knowing the sound
velocity, since K = ρc2.

Substitution of the value c = 1500 m/sec into the last formula yields K = 2.25 · 109 N/m2. In mechanics
of viscoelastic media, it is assumed that the stress relaxation time is similar in order of magnitude to the ratio of
the viscosity to the elastic modulus. Denoting the bulk compression stress relaxation time by τ∗, we obtain the
estimate τ∗ = τGK−1, where τ is the shear stress relaxation time. Setting G = 1.5 ·10−6 N/m2 and τ = 1.5 ·103 sec,
we have τ∗ = 10−12 sec. In developing the model for the behavior of water and similar fluids under experimental
conditions [6, 7], we assume that the compression stresses relax instantaneously. In an incompressible fluid, the
spherical part of the stress tensor is determined by pressure. The aforesaid explains why relation (1.6) dose not
contain pressure. There is reason to expect that the proposed model of a viscoelastic Maxwell medium can be used
to study fluid motion under microgravity and microscale motions of fluids and to describe the final stage of the
approach of fluids to equilibrium.
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Let us consider relation (1.6), choosing as an invariant derivative the corotational Jaumann derivative:

τ
(∂S
∂t

+ v · ∇S −W · S + S ·W
)

+ S = 2μD (1.7)

(W is the antisymmetric part of the tensor ∇v). Then, for any symmetric tensor S, we have

tr (S ·W −W · S) = 0.

Bu virtue of Eqs. (1.1), trD = 0. This relation and equality (1.6) lead to the following equation for the function trS:

τ
(∂ trS

∂t
+ v · ∇ trS

)
+ trS = 0.

If trS = 0 at the time t = 0, then, in view of the last equation, trS = 0 for any t.
Let us write equality (1.6) with the upper convective derivative:

τ
(∂S
∂t

+ v · ∇S −∇v · S − S · ∇vt
)

+ S = 2μD. (1.8)

Calculating the trace from both parts (1.8), we obtain the equation

τ
(∂ trS

∂t
+ v · ∇ trS

)
+ trS = 2τD : S.

The last relation is compatible with (1.5) only if D : S = 0, which leads to the overdetermination of the equations
of motion. The same result is obtained if in equality (1.6), the lower convective derivative is used as d̃/dt. Thus,
equalities (1.5) and (1.6) will be compatible only when choosing the Jaumann objective derivative.

Thus, we obtained a closed system of equations (1.1)–(1.3), (1.5), (1.7) for the functions v, p, and S. In
the general case of three-dimensional motion, this system contains nine quasilinear differential equations of the first
order, and in the case of flat plane motion, their number decreases to five.

2. Energy Identity. Below, Ωt ⊂ R
3 denotes the material volume, and Σt the surface bounding it. We

multiply Eq. (1.2) scalarly by the vector v, and in equality (1.6), after division by 2μ, we perform convolution with
the tensor S. Combining the obtained relations and integrating the result over the domain Ωt, we obtain the energy
identity

d

dt

∫

Ωt

(1
2
ρ|v|2 +

τ

4μ
S : S

)
dΩ =

∫

Σt

v · (−pn + S · n) dΣ − 1
2μ

∫

Ωt

S : S dΩ. (2.1)

Here n is the outward normal unit vector to the surface Σt. From relation (2.1), it follows that if Σt is a solid
impenetrable and immobile surface, it is subject to the no-slip condition

v = 0, x ∈ Σt, t > 0; (2.2)

if Σt is the free boundary, it is subject to the kinematic and dynamic conditions

v · n = Vn, x ∈ Σt, t > 0; (2.3)

−(p− p0)n + S · n = 2σHn, x ∈ Σt, t > 0. (2.4)

Here Vn is the velocity of displacement of the surface Σt along the outward normal, p0 is the atmospheric pressure,
H is the mean curvature of the surface Σt, and σ is the surface-tension coefficient. If condition (2.2) is satisfied,
then the surface integral in identity (2.1) vanishes. Then, we have

d

dt

∫

Ωt

(1
2
ρ|v|2 +

τ

4μ
S : S

)
dΩ =

1
2μ

∫

Ωt

S : S dΩ. (2.5)

The same occurs if conditions (2.3) and (2.4) are satisfied on this surface. Identity (2.5) implies that, in both cases,
the integrand term on its left side decreases monotonically with time and remains unchanged only for S = 0. This
case corresponds to the motion of the Maxwell medium as a nonderformable solid body.
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The integrands on the left sides of equalities (2.1) and (2.5) are nothing but the sum of the kinetic energy
of the material volume Ωt and the energy of elastic shear stresses. If we denote μτ−1 = G and identify G with the
shear modulus, the expression (4G)−1S : S will coincide with the expression for the shear stress energy density.

We denote the specific internal energy of the medium by U . The total internal energy is the sum of the
thermal and elastic energies:

ρU = ρcT +
τ

4μ
S : S (2.6)

(T is the absolute temperature and c is the heat capacity of the medium, which is considered constant). Un-
der the assumption that heat transfer in the Maxwell medium obeys the Fourier law with the constant thermal
conductivity κ, the energy equation can be written as

ρ
dU

dt
= κΔT + S : D, (2.7)

where d/dt is the convective time derivative. The second term on the right of Eq. (2.7) is a dissipative function.
As noted at the end of Sec. 1, Eqs. (1.1)–(1.3), (1.5), and (1.7) form a closed system for the functions v,

p, and S. If its solution is known, the temperature of the medium is determined from Eq. (2.7) into which
expression (2.6) is substituted. Without considering in detail this question, we note that, in the experiments
described in [6, 7], the effect of viscous dissipation on the heating of the medium is negligible due to the smallness
of the flow velocities.

Thus, it makes no sense to study temperature effects in the present work. However, the compatibility of the
proposed model of an incompressible Maxwell medium with the second law of thermodynamics is to be verified.
We write the main thermodynamic identity:

ρ
dU

dt
= ρT

ds

dt
+ S : D (2.8)

(s is the specific entropy). Relation (2.8) does not contain pressure since in the case of an incompressible medium,
it is not a thermodynamic variable. Relations (2.7) and (2.8) lead to the relation

ρT
ds

dt
= κΔT (2.9)

(entropy production equation). According to (2.8), elastic strains do not participate in entropy production due to
their reversibility.

Let us assume that the material volume Ωt is heat insulated. Then, by virtue of (2.9), the entropy of the
moving volume

L(Ωt) =
∫

Ωt

ρs dΩ

obeys the equation

dL

dt
=

∫

Ωt

κ

T
|∇T |2 dΩ.

Thus, the entropy of the isolated material volume does not decrease with time, and its conservation is possible only
in the case of isothermal processes. We note that the thermodynamics of deformation of viscoelastic media are
considered in great detail in [4, 8].

3. Two-Dimensional Motion of a Maxwell Medium. System (1.1)–(1.3), (1.5), (1.7), which describes
the motion of an incompressible viscoelastic Maxwell medium in the general three-dimensional case, is difficult to
study. The problem lies not only in its quasilinearity and high order but also in that this system does not have a
definite type. Below, we consider two-dimensional motions. We will introduce the following notation:

x1 = x, x2 = y, v1 = u, v2 = v, S11 = −S22 = A, S12 = S21 = B.
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The functions u, v, p, A, and B satisfy the system of equations

ux + vy = 0,

ρ(ut + uux + vuy) + px −Ax − By = 0,

ρ(vt + uvx + vvy) + py −Bx +Ay = 0, (3.1)

τ [At + uAx + vAy +B(vx − uy)] − 2μux +A = 0,

τ [Bt + uBx + vBy −A(vx − uy)] − μ(uy + vx) +B = 0.

Let the equality ϕ(x, y, t) = 0 specify the characteristic surface of system (3.1). The differential equations
of characteristics have the form

ϕt + uϕx + vϕy = ±
[ μ
ρτ

(ϕ2
x + ϕ2

y) − 2B
ρ

(ϕxϕy)
]1/2

,

ϕt + uϕx + vϕy = 0, ϕx = ±iϕy.

(3.2)

It is reasonable to draw an analogy between the characteristics of system (3.1) and the characteristics of the system
of equations of plane-parallel motion for an ideal incompressible fluid. The latter contains three first-order equations
and has two complex characteristics and one trajectory characteristic. The equations of these characteristics coincide
with the last three equations in (3.2). The presence of complex characteristics for both systems is due to the
incompressibility of the medium. The first two characteristics (3.2) of a viscoelastic media should be called sound
characteristics; however, the fact that the inequality |B| � μτ−1, which provides nonnegativity of the radicand in
the two first equations (3.1), is satisfied at the initial time does not guarantee that this inequality will be satisfied
during motion. If the inequality |B| > μτ−1 is satisfied, the development of short-wave Hadamard type instability
is possible. Lions and Masmoudi [9] considered a modified model of an incompressible viscoelastic Maxwell medium
obtained by addition of the viscous term μΔv to the right side of the momentum equation (1.2). One of the results
of [9] is a proof of the global unique resolvability of the two-dimensional initial-boundary-value problem for the
modified system with no-slip conditions on the boundary of the flow domain. The equations of characteristics for
the system of equations describing the three-dimensional motion of an incompressible viscoelastic Maxwell medium
without the assumption trS = 0 are given in [10]. In the same paper, the formulation of initial-boundary-value
problems for this system is discussed.

4. Analytical Solutions. The specificity of system (3.1) is that it is not evolutionary with respect to
pressure, and, therefore, the Cauchy problem with the initial data at t = 0 cannot be formulated for this system.
However, this system can be resolved for the derivatives of all sought functions for the variable x or the variable y.

Let us consider the following Cauchy problem for system (3.1):

u = u0(y, t), v = v0(y, t), p = p0(y, t), A = A0(y, t), B = B0(y, t) at x = 0. (4.1)

The following statement is valid.
Statement. Let the functions u0, v0, p0, A0, and B0 be analytic in some neighborhood of the point (y0, t0)

and, in addition, let the inequality u0 �= 0 be satisfied in this neighborhood. Then, problem (3.1), (4.1) has an

analytical solution in some neighborhood of the point (x0, y0, t0). This solution is unique in the class of analytic

functions.

The above statement is a consequence of the Cauchy–Kowalewski theorem.
5. Linear Model of Two-Dimensional Motion. From a physical point of view, a more natural problem

than (3.1), (4.1) is the initial-boundary-value problem for system (3.1) with the initial data for the functions u, v, A,
and B and no-slip conditions (2.2) on the boundary Σ in the domain Ω ⊂ R

2. Having no proofs of the resolvability
of this problem for the initial quasilinear system (3.1), we consider its linearized variant.

We introduce the stream function ψ(x, y, t) which satisfies the relations

ψy = u, ψx = −v.
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Linearizing system (3.1) in the state of rest, we obtain the equation

τΔψtt + Δψt = νΔΔψ, (x, y) ∈ Ω, t > 0. (5.1)

Here ν = μρ−1 is the kinematic viscosity. The no-slip conditions in terms of the stream function are written as

ψ = 0,
∂ψ

∂n
= 0, (x, y) ∈ Σ, (5.2)

where ∂/∂n denotes differentiation along the outward normal to the curve Σ. Equation (5.1) is of second order in
t and, hence, requires the specification of two initial conditions:

ψ = ψ0(x, y), ψt = ψ1(x, y), (x, y) ∈ Ω, t = 0. (5.3)

The first condition in (5.3) specifies the velocity of points of the medium at the time t = 0, and the second condition
specifies their accelerations. There is a difference between viscous fluid flow in the Stokes approximation [which
corresponds to τ = 0 in Eq. (5.1)] and the motion of a viscoelastic medium. In the latter case, at the initial time,
in addition to the velocity field, it is necessary to specify the components of the stress tensor deviator

A = A0(x, y), B = B0(x, y), (x, y) ∈ Ω, t = 0. (5.4)

Then, the function ψ1 contained in the second condition (5.3), is found as the solution of the Dirichlet problem for
the equation

ρΔψ1 − 2A0,xy +B0,xx −B0,yy = 0.

We denote the cylindrical region QN = {x, y, t: (x, y) ∈ Ω, t ∈ (0, N)} by QN and formulate the statement of the
resolvability of problem (5.1)–(5.3).

We make the following assumptions: 1) the curve Σ belongs to the class C2; 2) the functions ψ0 and ψ1

satisfy the conditions Δψ0 ∈ H1(Ω) and Δψ1 ∈ L2(Ω); 3) the conditions ψ0 = 0, ∂ψ0/∂n = 0, (x, y) ∈ Σ are
satisfied.

Statement 1. For any N > 0, there exists a unique solution of problem (5.1)–(5.3) such that Δψ ∈
H1,1(QN ).

Proof of this statement does not involve significant difficulties and is not given in the present paper. If the
function ψ is found, the functions A and B are determined from the last two equations of system (3.1) after their
linearization. Actually, the proof reduces to solving two ordinary differential equations of the first order with the
initial conditions (5.4), which include x and y as parameters.

6. Group Properties of System (3.1). The largest group admitted by system (3.1) is calculated in [11].
The basic operators of this group have the form

X1 = ∂t, X2 = y ∂x − x∂y + v ∂u − u ∂v + 2B ∂A − 2A∂B,

X3 = α(t) ∂x + α̇(t) ∂u − ρxα̈(t) ∂p, X4 = β(t) ∂y + β̇(t) ∂v − ρyβ̈(t) ∂p, X5 = γ(t) ∂p,

(6.1)

where α, β, and γ are arbitrary functions t of the class C∞; dots denote differentiation with respect to the argument.
Thus, the admitted group is infinite-dimensional, and, hence, it is pertinent to speak of a Lie pseudo-group rather
than group. The operator X1 corresponds to translation in time, and the operator X2 to conformal rotations in the
planes (x, y), (u, v), and (A,B). The operators X3, X4, and X5 are specific to the equations of an incompressible
continuous medium [12]. The first two of them correspond to transformation to a noninertial coordinate system
moving along the x (or y) axis with velocity α̇ (or β̇). The presence of the operator X5 among the basic operators
implies that the pressure in system (3.1) is determined to within an arbitrary function of time.

Sequentially setting α = 1, β = 1, α = t, and β = t in (6.1), we obtain the operators of translation and
Galilean translation along the x and y axes:

Y1 = ∂x, Y2 = ∂y, Y3 = t ∂x + ∂u, Y4 = t ∂y + ∂v. (6.2)

The Lie pseudo-group admitted by system (3.1) is a source of its exact solutions, of which the simplest are layered
flows.

7. Layered Flows. Below, we consider a solution of system (3.1) which is invariant with respect to the
translation group along the y axis. In this solution, all sought functions depend only on x and t. Without loss of
generality, we can set u = 0. The functions v, A, and B satisfy the closed system of equations

ρvt = Bx, τ(At +Bvx) + A = 0, τ(Bt −Avx) +B = μvx. (7.1)
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If the solution of system (7.1) is known, the function p is found by means of quadrature from the first equation of
system (3.1), in which it is necessary to set u = 0 and By = 0.

Unlike the basic system (3.1), system (7.1) is evolutionary with respect to all sought functions. It is hyperbolic
if the inequality τA+μ > 0 is satisfied. To study the properties of the solution of system (7.1), we consider the case
where the relaxation time τ and the dynamic viscosity μ simultaneously tend to infinity, and μτ−1 = σ = const.
In this case, the solution of system (7.1) is formally expanded in the small parameter τ−1. The equations for the
main terms of the expansion (in the former notation) have the form

ρvt = Bx, At = −Bvx, Bt = (σ +A)vx. (7.2)

System (7.2) has the integral

(σ +A)2 +B2 = F 2(x), (7.3)

where F is an arbitrary function x. To simplify further transformations, we set F = σ and eliminate the function A
from system (7.2) by using (7.3). In addition, in the equations obtained for the functions v and B, we transform to
the dimensionless variables x′, t′, v′, and B′ using the formulas

x = lx′, t = lρ1/2σ−1/2t′, v = ρ−1/2σ1/2v′, B = σB′,

where l is a constant which has the dimension of length. Below, the primes above the variables in the resultant
system of equations are omitted:

vt = Bx, Bt = (1 −B2)1/2vx. (7.4)

(The case where the extraction of the root gives rise to the minus sign on the right of the second equation in (7.4)
is reduced to that considered above by replacing B with −B.)

The theory of systems of quasilinear hyperbolic equations, similar to (7.4) is well studied (see, for exam-
ple, [13]). As is known, these equations are characterized by the formation of strong discontinuities of the solution
for any smoothness of the initial data. For system (7.4), discontinuities can be found by studying its solutions of
the type of simple waves, i.e., the solutions in which the functions v and B are linked by the functional relation
v = f(B). Then, by virtue of (7.4), f = ±(1−B2)−1/4, and for the function B, choosing the minus sign, we obtain
the equation

Bt = −(1 −B2)1/4Bx.

The substitution B = (1 − w4)1/2 reduces this equation to the well-known Hopf equation

wt + wwx = 0,

for which a sufficient condition for the occurrence of a strong discontinuity in the solution of the Cauchy problem
is a monotonic decrease of the initial function.

The problem of choosing Hugoniot condition on the strong discontinuity that guarantees uniqueness of
the solution of the Cauchy problem remains unsolved. This problem is nontrivial because the initial rheological
relation (1.6) does not have the form of the conservation law. Another important question is related to the proof of
the existence of the classical solution in the small in time to the Cauchy problem for system (7.1). To prove this, it
is sufficient to reduce system (7.1) to symmetric form, but the question of the possibility of rendering this system
symmetric also remains unsolved.

8. Exact Solutions of Free-Boundary Problems. It follows from the aforesaid that even in a fixed
domain, the problems for system (1.1)–(1.3), (1.5), (1.7) and its two-dimensional analog (3.1) are rather intricate.
The situation is further complicated if the surface bounding the material volume is free, i.e., a priori unknown. In
this case, the significance of exact solutions increases.

A universal tool for constructing exact solutions is provided by group analysis of differential equations [14].
The method proposed in [15] to construct invariant and partially invariant solutions of free-boundary problems
for the Navier–Stokes equations is based on the invariance property of the conditions on the free boundary under
transformations of some subgroup admitted by the system of Navier–Stokes equations. It turned out that the
specificity of this system is of no significance. This allows the proposed approach to be extended to free-boundary
problems for the investigated model of an incompressible viscoelastic Maxwell medium.
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Let us consider system (3.1), which describes two-dimensional motions of a Maxwell medium and the Lie
pseudo-group admitted by this system with the basic operators (6.1). We denote by G6 the subgroup of this
pseudo-group generated by the operators X1, X2, Y1, Y2, Y3, and Y4 [see (6.2)].

Theorem 1. Let H be an arbitrary subgroup of the group G6, and let the free surface Σt be a nonsingular

invariant manifold H . Then, conditions (2.3) and (2.4), which are satisfied on this surface, are also invariant with

respect to H .

Proof of this theorem is similar to the proof of Theorem 1 in [12, Chapter 6] and is not given in the present
paper. There is a natural extension of this theorem to the case of three-dimensional motions of a Maxwell medium
with a free boundary. An invariant solution of Eqs. (1.1)–(1.3), (1.5), and (1.7) which describes the process of filling
of a spherical hollow in a Maxwell medium under constant pressure at infinity is considered in [16].

It is necessary to note that the formulated theorem allows one to construct not only invariant but also
partially invariant solutions and their generalizations. As an example we consider the subgroup H2 of the group G6

with the basic operators Y1 and Y3. System (3.1) has no solution invariant with respect to H2 since the rank of the
corresponding Jakobi matrix [14] in (3.1) is smaller than the number of the sought functions in this system. The
class of partially invariant solutions is nonempty but rather narrow. As shown in [17], the set of exact solutions
is considerably extended if one does not require that part of the sought functions be invariant with respect to
the group H2. In [17], it was not assumed that the condition trS = 0 is satisfied. Below, this condition is
considered to be satisfied. Omitting the procedure of constructing the solution, we give the final result which needs
to be directly verified.

We consider the problem of symmetric deformation of a viscoelastic strip with rectilinear free boundaries
which are subject to the kinematic condition (2.3) and the condition of equality of the normal pressure to atmospheric
pressure [one of conditions (2.4)]. The tangential stresses on the boundaries of the strip are linearly distributed.
The flow domain is Ωt = {x, y: x ∈ R, |y| < l(t)}, and the lines y = ±l(t) are free boundaries. The solution is
represented as

u = xh(t), v = −yh(t), p = r(y, t), A = q(y, t), B = Cxy exp (−t/τ).
Here C is a specified constant and the function h(t) is a solution of the Cauchy problem

ρ(h′ + h2) = C exp (−t/τ), t > 0, h(0) = h0.

The expression for h(t) in terms of Bessel functions is given in [17]. The initial width of the strip is specified and
equal to 2l0. The specification of the constant h0 determines the initial velocity field, which turns out to be linear.
This solution is a generalization of the well-known Ovsyannikov solution [18] which describes the deformation of
a strip of an ideal incompressible fluid with free boundaries. The initial stress field is given by the formulas

A = q0(y), B = Cxy,

where q0(y) is a specified function. If the function h(t) is known, q0(y) is determined by solving the linear problem
for a second-order parabolic equation. The pressure r(y, t) is determined by means of quadrature. Finally, the
function l(t) (strip half-width) is represented as

l(t) = l0 exp
(
−

t∫

0

h(z) dz
)
.

In the obtained solution, the strip length is not limited. For large values of x, the condition of absence of complex
sound characteristics τ |B| < μ for this solution is violated. This implies the development of short-wave instability of
the solution at large distances from the line x = 0. However, it is possible to consider the restriction of this solution
to the domain ωt = {x, y: |x| < b(t), |y| < l(t)}, where b(t) is a specified function. On the specified boundaries of
the domain ωt, it is necessary to provide satisfaction of the boundary conditions compatible with the form of the
exact solution. If the initial length of the strip 2b0 is small enough so that Cτb0l0 < μ, the Hadamard instability
will be suppressed.
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